Tidying method for a Lognormal Mixture model (fitted via Expectation-Maximization algorithm).
tidy.survival_ln_mixture_em.Rd
These method tidy the estimates from survival_ln_mixture
fits into a short summary. It doesn't contain uncertainty estimates since it's a likelihood maximization algorithm.
Usage
# S3 method for class 'survival_ln_mixture_em'
tidy(x, effects = "fixed", digits = NULL, ...)
Value
A data.frame
without rownames. When effects="fixed"
(the default), tidy.survival_ln_mixutre
returns one row for each coefficient for each component of the mixture with two columns:
- term
The name of the corresponding term in the model.
- estimate
A point estimate of the coefficient (last iteration value).
Setting effects="auxiliary"
will select the precision and proportion of mixture components parameters.
Examples
require(survival)
lung$sex <- factor(lung$sex)
set.seed(1)
mod2 <- survival_ln_mixture_em(Surv(time, status == 2) ~ sex, lung)
tidy(mod2)
#> # A tibble: 4 × 2
#> term estimate
#> <chr> <dbl>
#> 1 (Intercept)_1 4.11
#> 2 sex2_1 0.941
#> 3 (Intercept)_2 5.74
#> 4 sex2_2 0.374
tidy(mod2, effects = c("fixed", "auxiliary"))
#> # A tibble: 8 × 2
#> term estimate
#> <chr> <dbl>
#> 1 (Intercept)_1 4.11
#> 2 sex2_1 0.941
#> 3 (Intercept)_2 5.74
#> 4 sex2_2 0.374
#> 5 phi_1 0.676
#> 6 phi_2 2.25
#> 7 eta_1 0.199
#> 8 eta_2 0.801