Package index
-
augment(<survival_ln_mixture>)
- Augment data with information from a survival_ln_mixture object
-
augment(<survival_ln_mixture_em>)
- Augment data with information from a survival_ln_mixture_em object
-
fit_metrics()
- Function used to calculate some distance metrics between the predicted survival and the observed survival.
fit_metrics()
is used to calculate distance metrics between empirical and fitted survival for a predictions object, preferably the object$preds
returned fromplot_fit_on_data()
.
-
join_empirical_hazard()
- Function used to join the empirical hazard to the data
-
nobs(<survival_ln_mixture>)
- Extract the number of observations from
survival_ln_mixture
fit.
-
plot(<survival_ln_mixture_em>)
- Visualizes the path of the EM algorithm
-
plot_fit_on_data()
- Function used to quick visualize the fitted values (survival estimate) on the data used to fit the model (via EM algorithm or Gibbs).
-
predict(<survival_ln_mixture>)
- Predict from a Lognormal Mixture Model
-
predict(<survival_ln_mixture_em>)
- Predict from a lognormal_em Mixture Model fitted using EM algorithm.
-
sim_data
- Simulated lognormal mixture data.
-
simulate_data()
- Function to simulate survival data from a mixture of normal distribution.
-
survival_ln_mixture()
- Lognormal mixture model - Gibbs sampler
-
survival_ln_mixture_em()
- Lognormal mixture model - Expectation-Maximization Algorithm
-
tidy(<survival_ln_mixture>)
- Tidying method for a Lognormal Mixture model.
-
tidy(<survival_ln_mixture_em>)
- Tidying method for a Lognormal Mixture model (fitted via Expectation-Maximization algorithm).